Introduction to the COOL Programming
Language

Stephen F. White

October 28, 1994

1 Datatypes

There are six datatypes in COOL: string (str), number (num), object (obj),
list (list), error (err) and mapping (map).

The only compile-time checking done by COOL is to ensure that any instance
variables are initialized only from the correct constants. Other than that, all
type checking is done at run-time, with the exception E_TYPE being raised if an
error occurs in an operator or system function.

1.1 String (str)

Strings are enclosed in doublequotes ("). The following are examples of string
constants:

|lfoo"
"The rain in spain.\n"
"They call me \"The Woodmaster\", son."

String instance variables are declared as follows:

str foo;
str bar, baz;
str zip = "The rain in spain.\n";

1.2 Number (num)
Numbers are long integers (typically in the range -231 to 231 - 1).

num a, n = -1034;

1.3 Object ID (obj)

Object ID’s consist of two parts: the ID, and the servername. The following are
values of type OBJ:

#5Q@joemud
#10@fredmud

If the object in question is on the local MUD, the server part may be omitted:
#7

represents object #7 on the local MUD. The value #-1 is a special value, usually
meaning “nothing”, “nowhere”, or some kind of error condition.

1.4 List (list)

Lists are heterogenous, ordered collections of other datatypes. They can be
manipulated as unordered sets, using the setadd() and setremove() functions,
or as ordered lists, using listinsert(), listappend(), listassign(). and listdelete().

Typically lists are used to store things like the contents of a room (a list of
OBJ), or a list of methods on an object (a list of STR).

The elements of a list are enclosed by braces, and separated by commas. The
following are examples of lists:

{} (the empty list)

{1, 2, 3} (a list of numbers)
{"abc", "def", "ghi"} (a list of strings)

{ {1, 2}, {3, 4}, {5, 6} } (alist of lists)

{1, "abc", #3} (a heterogenous list)

The + and - operators are overloaded for lists to perform the setadd() and
setremove () functions, respectively.

1.5 Error (err)

Error values store the result of an operation. The following is a list of the
current errors and their meanings:

Error Symbol | Description

E_TYPE Type mismatch
E_ARGTYPE Argument type mismatch
E_NARGS Incorrect number of arguments
E_RANGE Range error

E_INVIND Invalid indirection

EDIV Division by zero
E_MAXREC Maximum recursion exceeded
E_METHODNF Method not found
E_VARNF Variable not found

E_FOR For variable not a list
E_SERVERNF Server not found
E_SERVERDN Server down

E_OBJNF Object not found
E_MESSAGE Message unparseable
E_TIMEOUT Timed out

E_STACKOVR Stack overflow
E_STACKUND Stack underflow

E_PERM Permission denied
E_INTERNAL Internal error

E_FILE File not found

E_TICKS Task ran out of ticks
E_TERM Task terminated

E_MAPNF Mapping not found

1.6 Mapping (map)

Mappings are arrays which can be indexed by values of any type. The most
common use is indexing by strings, for use as associative arrays. Each element
of a mapping consists of two parts: the key, and the data. Indexing of mappings
is done in exactly the same way as lists:

map a;
a["name"] = "stephen";
al"cpus"] = 11;

Now indexing on name or cpus will return the values assigned:

a["name"] => "stephen"
al["cpus"] => 11
a["foobar"] => E_MAPNF

1.6.1 Initializing mappings

Mappings may be initialized using a constant mapping expression, which is of
the form:

[keyl => wvaluel, key2 => wvalue2, ...]
For example, the above assignments could be written as:
map a;

a = ["name" => "stephen", "cpus" => 11];

Of course, indexing on values of other types is possible also:

a = [#3 => "Object Number Three", E_RANGE => "Value out of
Range"];

You can even index on other associative arrays, but that’s just perverse!

2 Variables

There are two kinds of variables: method variables and object variables. Method
variables are declared in methods, and are temporary. They are created for the
execution of the method, and are freed when execution is complete. Object
variables are permanent, and are used to store the state of an object (its name,
location, etc). Object variables are inherited by instances of an object. Method
variables are sometimes referred to as “local”, and object variables as “global”.

An object’s variables may only be assigned by that object’s methods. The only
way to retrieve or modify another object’s variables is to send a message to that
object. For example, the “location” message says, “give me your location”, and
the “moveto” message says, “move yourself to the following location”.

Variables may be fixed type, in that they can store one type of value, or variable,
so that they can store any. Assigning the wrong type of value to a fixed-type
variable raises E_TYPE, a type mismatch.

Currently, object variables can only be fixed-type, and method variables can
only be variable type. This may change in the future. Both types of variables
may be initialized in their declaration.

2.1 Examples

str name;

declares a fixed-type string variable called “name”.
num contents;

declares a fixed-type list variable called “contents”.
var a, b;

declares a local variables “a” and “b” which may hold values of any type.

2.2 Built-In Variables

There are a number of tokens in COOL which act like built-in variables. How-
ever, they may not be assigned to. The following table lists them.

Variable | Type | Value

this obj Object on which the current thread is acting
player | obj Player object which initiated this thead
caller | obj Object which called the current method
args list | Arguments to the current method

3 Methods

3.1 Declaring Methods

Methods consist of a method declaration, variable and exception declarations,
statements, and an endmethod declaration.

The simplest method of all is the null method:

method foo
endmethod

Methods describe the action to be taken when an object receives a certain mes-
sage. If a message is sent to an object for which it does not have a corresponding
method, E.METHODNF is raised. Methods may be called by any other object, so
any permissions checking must be done by the method itself.

method add
return args[1] + args[2];
endmethod

3.2 Blocked Methods

Sometimes it is desired that a method should be declared on an object, and
non-overrideable by any of its children. The keyword blocked may be used in
a method declaration to declare such a method.

blocked method foo
endmethod

Thus, any children of this object would have the “foo” method, but any “method
foo” declared on those children would be ignored.

4 Message Passing

Passing a message from one object to another is the only way in COOLMUD
for objects to interact. Objects may not retrieve other objects’ data, except
by passing a message. Similarly, objects may not set other objects’ properties,
except by passing a message.

4.1 Syntax

Message passing is accomplished with the ‘.’ operator:
#3Q@joemud.foo (1, 2, 3);

passes the message 'foo’ to object #3 on joemud, with the numeric arguments
1,2, 3.

var a;
a = #3.location();

sends the message ’location’ to #3 on the local mud, and stores the result in
temporary variable a. If there are no arguments, the brackets may be omitted,
like so:

var a;
a = #3.location;

Note: When no arguments are required, it’s a good idea to use brackets to
indicate the type of message being passed. If the message will change the remote
object or acts like a function, use brackets. If the message will only retrieve data,
use no brackets.

5 Verbs

Verb declarations are a simple way of attaching player commands to objects.
Verb declarations must appear in the declarations section of an object, before
any method declarations. A verb declaration is like a template, which reads
from left to right. On the left is the pattern to be matched, on the right is the
method called if there is a match. For example,

verb "look" = look;

This defines a mapping between the command “look” and the “look” method
on the object. When the object is checked for commands, the command “look”
will cause the method named “look” on the object to be called. Any arguments
may follow the verb in this example, so the commands “look fred”, “look”, and

“look at the pretty flowers” would all match. If further parsing is required,
prepositions may be used (see below). If only a verb is specified, only the
first word of the command will be checked; checking the arguments must be
performed by the associated method.

5.1 Verb Aliasing
Multiple verbs may be listed in the same declaration, separated by spaces:
verb "look examine" = look;

These act as aliases, so either “look” or “examine” will call the “look” method.

5.2 Abbreviations
The asterisk character, *, may be used to indicate abbreviations:
verb "lxook" = look;

This will match the commands “I”, “lo”, “loo”, and “look”.

The characters up to the asterisk must be typed in order for the command to
match. Characters after the asterisk are optional. For example,

verb "exa*mine" = examine;

[195%2)

would match “exa”, “exam”, etc., but not “ex” or “e”.

5.3 Prepositions
In addition the the verb name, a preposition may be supplied:
verb "hit" : "with" = hit;

Here, the colon separates the verb and preposition. Only commands containing
both the verb and that preposition in them will be matched: “hit joe with
sledghammer” and “hit with book” would match; “hit” by itself would not.
Multiple prepositions may also be used:

verb "hit smack" : "with using" = hit;

Commands matching this template include: “hit using sword” “smack troll
with emacs source”, “smack with fred”, etc. No abbreviations may be used for
prepositions.

Any word or character may be used as a preposition, so emulating TinyMUD
is possible:

verb "@descxribe" : "=" = describe;

”

This hard-to-read declaration uses ”=" as the preposition, so the command

@desc me = groovy
would match. Note that spaces around the ”=" are required, however. A better
way to do this would be to modify the “parse” method on the PLAYER object,
but that’s beyond the scope of this humble paragraph.

5.4 Inheritance of Verbs

All verbs declared by an object are inherited by instances of that object. For
example:

object FOO
verb "hit" = hit;
method hit

endmethod
endobject
object BAR

parents FO0O;
endobject

Now both FOO and BAR have “hit” verb available.

It is important to note that verb and method inheritance are separate, and both
start from the instances and move up. When a verb matches, the method is
passed to the child, even if the verb was declared on the parent. If the child
object redefines the method, that method will be used instead. In the example
above, if BAR defined a “hit” method, it would be used when BAR was “hit”.
Redeclaring the verb isn’t necessary.

5.5 The Method Part

We’ve seen how a verb template is set up, but so far no action can be taken
because we don’t have a method to be called. When writing a method to be
used as a verb, certain conditions apply.

5.5.1 Verb Arguments

When a method is called as a verb, the arguments to the verb are passed as
strings in the “args” variable, as follows:

Without Prep | With Prep
args[1] | verb verb
args[2] | direct object direct object
args[3] preposition
args[4] indirect object

The parser itself does no matching of dobj or iobj. The method itself is respon-
sible for ensuring that the arguments specified refer to the correct object. For
example, consider a “button” object with the verb declaration:

verb '"press" = press;

This declaration matches “press button”, but also “press”, “press nancy”, etc.
In order to make sure the command refers to the button, we must explicitly
match args[2], the direct object:

method press /* verb */
if (!this.match(args[2])) /* not this object */
return 1; /* abort */
endif

endmethod

Here we are assuming that the object has a method called “match”, which
returns 1 if the argument matches the object’s name. If the direct object doesn’t
match the object’s name, the verb is exited with numeric value “1”. The return
value from a verb method has a special meaning. Returning a non-zero value
indicates to the parser that no match was found, and the parser should continue
to look for verbs on this and other objects. Returning zero means that the match
was successful, and no further parsing should be done.

10

NOTE: It is a good idea to comment the “method” declaration of a method
which is being used as a verb, to remind yourself of the special conditions which
apply to writing a verb (arguments, return value).

6 Control Flow

6.1 if Statement

The if statement is the conditional for COOL and whose simplest form is:

if (expression)
statements
endif

If expression evaluates true, statements are executed. Note that both the
parentheses around the condition and the endif are mandatory, and there is no
‘then’ after the if. ifs may be nested infinitely.

6.1.1 Conditions

In addition to numeric 1 and 0, the following values may be used in the expres-
ston above.

Type | Condition for “true”

NUM Non-zero

STR Non-empty

LIST | Non-empty

MAP Non-empty

0BJ Positive (ie., not #-1)

ERR (All error values are FALSE)

Note that the objects referenced by 0BJ values may not actually exist, but as
long they are positive and have a valid server id, COOL will treat them as “true”.

&& and | | are the boolean ‘and’ and ‘or’ operators. ! is the ‘not’ operator. They

may be used to form boolean conditions such as:

(a==5%&& b !=0)
(player.location == location && !player.dead)
(st || 's2)

11

The boolean operators have the same precedence as C. They also “short-circuit”
in the same way that that they do in C. The first false condition in an &&
expression will return a false result, and will cause short-circuit execution of the
rest of the statement. The first true condition in a || expression will make the
result true, and will short-circuit execution of the rest of the expression.

6.1.2 else Statement

The else construct allows a programmer to specify a set of statements to be
executed if the condition in an if statement evaluates false.

if (expression)
statementsl
else
statements?2
endif

If expression evaluates true, statementsl are executed. Otherwise, statements2
are executed.

6.1.3 elseif Statement

The elseif statement may be used to test a series of conditions, without re-
quiring another level of if/endif pairs. Its function is mostly cosmetic.

if (expressionl)
statementsl

elseif (expression2)
statements?2

else
statementss

endif

If expressionl is true, statmentsl are executed. Otherwise, if expression2 is
true, statements?2 are executed. Otherwise, statements3 are executed. For
example, the code:

if (a == "who")
c=1;

12

else
if (a == "what")
c = 2;
else
if (a =
c = 3;
else
c = 0;
endif
endif
endif

could be instead written as:

if (a == "who")
c =1;

elseif (a == "what")
c = 2;

elseif (a == "where")
c = 3;

else
c = 0;

endif

6.2 for Statement

The for statement allows the programmer to traverse a list of values. It comes
in two flavours. The first flavour is for iterating over elements of a given list or
string, and the second for iterating of values in a given range. for statements
may be nested infinitely.

6.2.1 Iterating over a given list or string
for wariable in (expression)

statements
endfor

This construct sets variable to each element in expression in turn, and executes
statements for each one. expression must be an expression whose value is a list
or a string. If not, E_FOR is raised.

13

6.2.2 Iterating over a list
Examples:

for a in ({1, 2, 3})
player.tell(tostr(a));
endfor

would set a to 1, 2, and 3 in turn, and echo the result to the player.

for item in (player.contents)
player.tell(item.name);
endfor

would set item to each element of player.contents and echo the name of each
object to the player (assuming that “contents”, “name” and “tell” methods have
been defined on the objects in question).

6.2.3 Iterating over a string
Example:
for ¢ in ("abcde")
endfor
would set ¢ to “a”, “b”, “¢”, “d” and “€” in turn within the body of the loop.
6.2.4 Iterating over a range of values
This flavour sets a variable to an increasing range of numeric values:

for wariable in [expressionl ..expression2]
statements
endfor

This construct sets variable to each value in the given range, from expressionl
to expression2 . Both expressions must be integers, or E_TYPE is raised. For
example,

14

for n in [1..5]
endfor

would set n to 1, 2, 3, 4, and 5. If expression?2 is less than expressionl, the loop
will not execute at all.

6.3 while Statement

while (expression)
statements
endwhile

This construct executes statements while expression evaluates true. For ex-
ample:

var a;

a = b;

while (a > 0)
echo(tostr(a));
a=a-1;

endwhile

6.4 do/while Statement

do
statements
while (expression) ;

Same as the while statement, except that expression is tested at the end of the
loop, instead of the beginning. The loop is thus always executed at least once.

6.5 return Statement

return [expression| ;

The return statement returns expression to the calling function, and exits the
current verb. Returning a value to the command parser does nothing.

15

6.6 break Statement

break [num] ;

The break statement is used to exit from a loop, within the body of the loop.
The optional numeric constant indicates how many loops to break out of, in
nested loops.

6.7 continue Statement

continue [num] ;

The continue statement is used to break out of the current iteration of a loop
and start again at the top. The optional numeric constant indicates which loop
to restart (the default is 1).

7 Built-in Functions

COOLMUD has a number of built-in functions. These functions can be divided
into roughly 7 groups: functions for manipulating objects, dealing with players,
miscellanous functions, thread functions, list manipulation functions, conversion
functions, and wizard functions. The following is a summary of the functions,
followed by a more detailed description of each.

16

Function

Description

clone()
destroy ()
chparents (list)
lock(str)

add_verb(verb ,prep ,method)

rm_verb (str)
rm_method (str)
rm_var (str)
unlock(str)
verbs ()

vars ()

methods ()

getvar (str)
setvar (str ,value)
hasparent (obj)
find_method (str)
spew_method (str)

Make an instance of this
Destroy this

Change the inheritance of this
Place a named lock on this

Add a verb to this

Remove a verb from this
Remove a method from this
Remove a variable from this
Remove a named lock from this
Return a list of verbs on this
Return a list of variables on this
Return a list of methods on this
Get a variable on this, by name
Set a variable on this, by name
Does this have obj as a parent?
Find a method on this or ancestor
Spew internal stack-machine code

list method(str, ...) Decompile the method str to source
decompile() Decompile the object this to source
objsize() Return the size (in bytes) of this
echo (str) Display str to this (player)

echo_file(str)
disconnect ()
program(| obj ,method |)

Display a local file to this (player)
Disconnect this (player)
Enter programming mode

typeof (var)
lengthof (var)
serverof (obj)
servername (0bj)
servers ()
explode(str [,sep)
time ()

ctime([num|)
crypt(str [,salt])

match (template ,str [,sep|)
match_full (template ,str [,sep])

psub O
strsub(with ,what ,str)

pad (str ,length [, padchar |)

random(num)

compile(str ,[obj ,method |)

Get the type of a value

Get the length of a list or string

Get the server # of an obj value

Get the server name of an obj value
Return the list of known servers
Break a string into a list of strings
Get the current time & date

Convert numeric time to ASCII string
Encrypt a string, with optional salt
Match a string to a template (prefix)
Match a string to a template (full)
Perform %-variable substitutions
Perform string substitution
Pad/truncate a string

Return a random number 1 ..num
Compile str into an object or method

17

’ Function \ Description
sleep(num) Pause for num seconds
kill(num) Terminate thread num
psO Get a list of active threads
setadd (list ,value) Add a value to a set, no duplicates
setremove (list ,value) Remove a value from a set
listinsert (list ,value [,pos |) | Insert a value into a list
listappend (list ,value [,pos]) | Append a value to a list
listassign(list ,value ,pos) Assign a value to an element of a list
listdelete (list ,pos) Delete a value from a list
tonum(var) Convert a value to number type
toobj (var) Convert a value to object type
tostr (var) Convert a value to string
toerr (var) Convert a value to error type
shutdown () Shut down the MUD
dump () Dump the database
writelog(str) Write str to the logfile
checkmem () Show memory usage
cache_stats() Show memory cache statistics

7.1 Object Functions

All functions which perform operations on objects refer to the current object,
this. There is no way to directly modify or get information about a different
object. This is done to ensure that an object’s methods will work across inter-
mud links (see “distrib”). Also, it serves as a permissions system: to clone
an object, for example, you must ask the object to clone itself by sending it a
message.

7.1.1 clone()

Clone the current object. A new object is created, whose parent is the current
object. The new object’s init method is called. Return value: The object ID of
the new object. If the current object no longer exists (ie., has been destroyed),
#-1 is returned.

7.1.2 destroy()

Destroy the current object. The object itself is responsible for cleaning up any
references to itself prior to this call. This might include removing any contained

18

objects, re-parenting or destroying any instances of it, etc.

7.1.3 chparents(list)

Change the parents of the current object to those specified in list. All variables
and methods on the object itself remain intact, however any variables or meth-
ods it inherited from its old parents parents it may not inherit from the new.
list must be a non-empty list, and must not cause any loops in the inheritance
hierarchy (eg., an object may not have itself or one of its children as a parent).
Any children of the current object will also have their inheritance changed by
this call, such that the new parents specified in the list will be ancestors of the
children as well.

7.1.4 lock(str)

This function is used to lock an object, to prevent another execution thread from
modifying the object before the current thread is finished with it (see “locking”).
The argument str is the name of the lock to place on the object. Locks placed
by an execution thread remain in effect until a corresponding unlock() call, or
until the method terminates.

7.1.5 add_verb(werb ,prep ,method)

Add a verb to the current object. verb is the name of the verb to add. prep is
the preposition, or "" for none. method is the name of the method to call in
the current object when the verb gets triggered. The verb is added to the end
of the object’s verb list, unless a verb with the same name and no preposition
exists, in which case it is inserted before that verb. This is to prevent a verb
with no preposition masking one with a preposition.

7.1.6 rm_verb(str)

Remove the first verb named str from the current object. The argument may
also be a string representing the number indexing the verb to be removed (in-
dexed from 0). eg.,

rm_verb("3");

would remove the 4th verb on the current object.

19

7.1.7 rm_method(str)

Remove str from the current object. Note that COOLMUD has special provision
to allow a method to remove itself and continue executing. It won’t be actually
destroyed until after the method finishes.

7.1.8 rm_var(str)

Remove the variable (property) named str from the current object.

7.1.9 unlock(str)

Remove the lock named str from the current object. If any execution threads
are waiting for this lock to be removed, they will execute.

7.1.10 verbs()

Return a list of verbs on the current object. Each element of the list is in turn
a 3-element list, consisting of 3 strings: the verb name, the preposition, and the
method to call.

7.1.11 vars()

Return a list of variables (properties) on the current object. Each element of
the list is a string containing the name of the variable.

7.1.12 methods()

Return a list of methods on the current object. Each element of the list is a
string containing the name of the method.

7.1.13 getvar(str)

Gets the value of the variable named str on the current object. Normally, one
would just reference the variable in COOL code by name, but getvar() allows
the use of an arbitrary string to get the value of a variable. Example:

20

getvar ("abc" + "def")

would return the value of the variable named abcdef on the current object.

7.1.14 setvar(str ,value)

Sets the value of the variable named str on the current object to value . Again,
this would usually be accomplished with assignment operator, but in certain
cases (eg., the name of the variable must created at run-time with an expression),
this function must be used. If the variable does not exist, it is created. Note
that the type of the new variable is determined by wvalue, and may not later be
changed. Example:

setvar ("abc" + "def", 100);

would set the value of the variable named abcdef on the current object to the
numeric value 100. If abcdef did not exist, it would be created.

7.1.15 hasparent (obj)

Returns a positive value if the current object has obj as a parent. This function
looks recursively on all parents of the current object, so it will return 1 if the
object has obj as a parent anywhere in its inheritance tree, and 0 otherwise.

7.1.16 find_method(str)

Locates the method named stron the current object, if one exists. This activates
the same method-searching algorithm as used when actually sending an object
a message. Returns the object ID of the object defining the method, or #-1 if
none is found. (This was useful in building the @1ist command, for instance).

7.1.17 spew.method(str)

Returns a string containing the internal stack-machine code for method str .
This code is pretty unintelligible unless your brain works in RPN. Even then,
some instructions are hard to figure out, and there’s not much point. Only for
the habitually curious.

21

7.1.18 1list_method(str [,lineno [, fullbrackets |, indent]]])

Returns a string containing the decompiled code for method str . This works
by turning the stack machine code back into readable form. It does automatic
indentation, line numbering, and smart bracketing (ie., it will use the mini-
mum number of brackets when decompiling an expression). The three optional
arguments are numeric arguments which control the decompilation:

lineno Turns line numbering on and off (default on).

fullbrackets When on, dumb bracketing will be used in every expression. De-
fault is off, or smart bracketing.

indent The number of spaces to use in indenting the code (default 2).

The string returned contains embedded newlines.

7.1.19 decompile()

Decompiles the entire current object back to source. Returns a string, containing
embedded newlines containing the source for the object. Variables are shown
auto-initialized to their current values. This function can be very CPU-intensive,
if the object is large.

7.1.20 objsize()

Returns the size, on disc, of the current object. This reflects the ideal size, and
not the actual amount of memory or disc consumed by the objecct, which are
subject to malloc () tax, dbm tax, etc.

7.2 Player Functions

These functions also work on this, the current object. However, they assume
that this is a connected player. They will have no effect if on a non-player
object, or a player object which isn’t connected.

7.2.1 echo(str)

Display str to the current object. Does nothing if the current object is not a
connected player.

22

7.2.2 echo_file(str)

Read in the contents of the local file str, and echo them, one like at a time, to
the current object. The file is located relative to RUNDIR (usu. bin/online) of
the server’s installation.

7.2.3 disconnect()

Disconnect the current object.

7.2.4 program([obj ,method |)

Enter programming mode. This sets a flag on the player’s descriptor such that
all input from the player is diverted to a temporary file. When the player enters
", the file is compiled, and then erased. There can either be no arguments,
in which case the server expects a series of objects, or two arguments, which
should be the object and method to program. In either case, the server currently
uses a built-in set of permissions checks to determine whether the player may
reprogram that object: either they must be in the object’s owners list, or in
SYS_OBJ.wizards.

7.3 Miscellanous Functions
7.3.1 typeof (var)

Returns a number representing the type of var . This value may be checked
against the pre-defined constants NUM, OBJ, STR, LIST and ERR.

7.3.2 lengthof (var)

Returns a number representing the length of var . var must be a string or list
expression.

7.3.3 serverof (obj)

Returns a number representing the server ID of obj . This ID is used internally
by the server, and has no meaning except that ID zero is the local MUD. So the
statement

23

if (!serverof (thingy))
endif
would evaluate to true if thingy is a local object.

7.3.4 servername (0bj)

Returns a string representing the server name part of obj .

7.3.5 servers()

Returns a list corresponding to the system object (#0) at each remote server
(eg., #0Q@remotemud, #0@localmud, etc).

7.3.6 explode(str [,sep |)

Break str into a list of strings. By default, explode breaks on spaces; the
optional second argument is the character to break on.

7.3.7 time()

Returns a numeric value representing the current date and time, given in seconds
since 12:00 GMT, January 1, 1970.

7.3.8 ctime(]| num |)

Returns a string representing the integer num as an English date, or the current
time if no argument is given.

7.3.9 crypt(str| ,salt])

Encrypt a string. This function uses UNIX’s crypt() routine to encrypt a string.
Useful for password checking, etc.

24

7.3.10 match(template ,str [,sep])

This function matches str to template . str should be a 1-word string which
is compared against each word in template . If str matches a substring of any
word in template , 1 is returned, otherwise 0 is returned. The optional third
argument is the separator to use when matching (default is a blank).

7.3.11 match_full(template ,str [,sep |)

This function matches str to template , as above, except that str must match
an entire word in template , not just a substring.

7.3.12 psub(str)

This function substitutes the value of the local (method) variable ”foo” for each
instance of ”%foo” or ”%foo%” in str. Example:

foo = "system";
n = #0;
echo(psub("%n is the %foo object."));

would result in the output ”#0 is the system object”.

7.3.13 strsub(with ,what ,str)

Perform string substitution.

7.3.14 pad(str ,length [, padchar |)

Pad/truncate a string.

7.3.15 random(num)

Return a random number 1 ..num

25

7.3.16 compile(str ,[obj ,method])

Compile str into an object or method

7.4 List Functions

Lists are heterogenous collections of values, which may be treated as ordered
lists, or unordered sets (see ’datatypes’). Choosing either the ’set’ operations
or ’list” operations determines how they are treated.

Since COOL has no concept of pointers (and all arguments are passed by value),
none of the list operations can modify lists passed to them. Instead, they return
new lists with the indicated modifications performed. So the code:

setadd(a, 3);
on its own does nothing.
a = setadd(a, 3);

on the other hand, adds the element 3 to the list variable a, as intended.

7.4.1 setadd(list ,value)

This function adds wvalue to list , as long as it’s not already present. Returns
the new list.

7.4.2 setremove(list ,value)

Remove value from list , anywhere in the list. Returns the new list.

7.4.3 listinsert(list ,value [, pos])

Insert value into list . By default, the new element is inserted at the beginning
of the list. If the optional numeric argument pos is given, the element is inserted
before position pos . Returns the new list.

26

7.4.4 listappend(list ,value [, pos])

Appends value to the end of list , or after position pos , if given. Returns the
new list.

7.4.5 listassign(list ,value , pos)

Replaces element at position pos in list with value . Returns the new list.

7.4.6 listdelete(list ,pos)

Deletes the element at position pos in list . Returns the new list.

7.5 Conversion Functions

These functions allow values of one datatype to be converted into values of
another datatype.

7.5.1 tonum(var)

Convert an obj, string, or error value into a numeric value. Object values are
converted by using the object ID portion as the new value. Strings are parsed
like the UNIX function atoi(). Error values return the internal ID of the error
(which isn’t much use except to trivia addicts).

7.5.2 toobj(var)

Convert a num, string, or error value into an object ID value. Numbers are
converted by using the number as the object ID portion of the new value, and
the local server for the server ID portion. Strings are parsed, the same way
COOL itself parses: #3 or #3@foomud syntax. Errors are converted by using the
internal ID of the error as the object ID portion, and the local server for the
server ID portion.

27

7.5.3 tostr(var)

Convert a string, number, object, list or error type into a string value. Strings
are converted by enclosing them in doublequotes, and escaping any control chars
with a backslash (\n, \t, etc). Numbers and object ID’s are simply printed.
Lists are evaluated recursively, printing ”’; followed by the list elements, sepa-
rated by commas, and then . Errors are converted into a string representing
the error identifier (E_TYPE becomes "E_TYPE").

7.5.4 toerr(var)

Convert a string, number, or object value into an error value. Strings are parsed,
the same way COOLMUD parses errors ("E_TYPE" becomes E_TYPE). Numbers
are converted by using the number as the internal error ID. Object values are
converted by using the object ID portion as the error ID.

7.6 Task Functions

7.6.1 sleep(num)

Pause for num seconds

7.6.2 kill(num)

Terminate thread num

7.6.3 psO

Get a list of all active threads on the MUD. Returns a list of lists, in which each
element represents a thread in an 11-element list of the form:

msgid, age, ticks, player, this, on, caller,
args, methodname, blocked_on, timer

msgid The message identifier of the current thread.

age The "depth” of the message in recursive calls.

28

ticks The number of ticks used by the thread so far.

player The player who typed the command that initiated this thread.
on The object on which the method which is executing is defined.
caller The object which called this method.

args The arguments to this method, when called.

methodname The name of the currently-executing method.

blocked_on A numeric identifier, indicating the state of the currently-executing
thread.

timer A numeric value, indicating the time at which the current thread will
resume, or expire (depending on state).

7.7 Wizard Functions

All wizard functions check that the object calling them is a wizard by looking
in SYS_OBJ.wizards

7.7.1 shutdown()

Shut down the MUD. The database is written, remote servers disconnected, and
the COOLMUD process terminates.

7.7.2 dump()

Dump the database.

7.7.3 writelog(str)

Write str to the logfile. The string is prefixed by the current date and time.

7.7.4 checkmem()

Returns a string showing the amount of memory dynamically allocated, and
how many chunks it was allocated in. If the server was not compiled with
-DCHECKMEM, this function will return “Memory checking disabled.”

29

7.7.5 cache_stats()

Returns a string with embedded newlines containing the current statistics of
the object-paging cache. Currently the output looks like this:

cache stats, last 24 sec.:

writes: 8 reads: 161

dbwrites: O dbreads: 10

read hits: 151 active hits: 126

write hits to dirty cache: 6

deletes: O checks: 18

resets: 11 syncs: O objects: 161

30

