COOLMUD Programmer’s Manual

For COOLMUD Version 2.0
September 1992

by Rusty Wright (aka “Gus”)

(This document is heavily modified from the LambdaMOO manual by Pavel
Curtis.)

Copyright (©) 1992 by Rusty Wright.

Copies of the electronic source for this document can be obtained using
anonymous FTP on the Internet. At the site ‘ferkel.ucsb.edu’ the files are
‘pub/mud/CoolMUD/coolmud. *’; several different file formats are provided,
including Texinfo, plain text, and Postscript.

Permission is granted to make and distribute verbatim copies of this manual
provided the copyright notice and this permission notice are preserved on all
copies.

Permission is granted to copy and distribute modified versions of this manual
under the conditions for verbatim copying, provided that the entire resulting
derived work is distributed under the terms of a permission notice identical
to this one.

Permission is granted to copy and distribute translations of this manual into
another language, under the above conditions for modified versions, except
that this permission notice may be stated in a translation approved by the
author.

Introduction 1

Introduction

COOLMUD is a network-accessible, multi-user, programmable, interactive
system designed for the construction of text-based adventure games, confer-
encing systems, and other collaborative software.

Participants (usually referred to as players) connect to COOLMUD using
telnet or some other, more specialized, client program. Upon connecting,
they are usually presented with a welcome message explaining how to either
create a new character or connect to an existing one. Characters are the
embodiment of players in the virtual reality that is COOLMUD.

Having connected to a character, players then give one-line commands that
are parsed and interpreted by COOLMUD as appropriate. Such commands
may cause changes in the virtual reality, for example, changing the location
of a character, or may simply report something, such as the appearance of
some object.

The job of interpreting commands is shared between two major components
in the COOLMUD system: the server and the database. The server is a
program, written in a standard programming language, that manages the
network connections, maintains queues of commands and other tasks to be
executed, controls all access to the database, and executes other programs
written in the COOL programming language. The database contains repre-
sentations of all objects in the virtual reality, including the COOL programs
the server executes to give objects their specific behaviors.

Almost every command is parsed by the server into a call on a COOL method
that actually does the work. Thus, programming in the COOL language is a
central part of making non-trivial extensions to the database and thus, the
virtual reality.

In the next chapter we’ll go over the structure and contents of a COOLMUD
database. The following chapter gives a complete description of how the
server performs its primary duty: parsing the commands typed by players.
Next, we’ll examine the syntax and semantics of the COOL programming
language. Finally, we’ll cover the database conventions assumed by the
server.

Note: This manual describes only those aspects of COOLMUD that
are entirely independent of the contents of the database. It does
not describe, for example, the commands or programming interfaces
present in the COOLMUD database.

Chapter 1: The COOLMUD database 3

1 The COOLMUD database

In this chapter we’ll examine in detail the various kinds of data that can
appear in a COOLMUD database and that, therefore, COOL programs can
manipulate. In a few places, we’ll refer to the boot database. This is just
one particular COOLMUD database.

1.1 Values

There are only a few kinds of values that COOL programs can manipulate:

e numbers (integers in a specific, large range)

e strings (of characters)

e objects (in the virtual reality)

e ecrrors (arising during program execution)

e lists (of all of the above, including lists)
The only numbers that COOL understands are the integers from —2731
(that is, negative two to the power of 31) up to 2731 — 1 (one less than
two to the power of 31); that’s from —2147483648 to 2147483647, enough
for most purposes. In COOL programs, numbers are written just as you
see them here, an optional minus sign followed by a sequence of decimal
digits. In particular, you may not put commas, periods, or spaces in the
middle of large numbers, as we sometimes do in natural languages (e.g.,
2,147,483,647").
Character strings are arbitrarily-long sequences of normal, ASCII printing

characters. When written as values in a program, strings are enclosed in
double-quotes, like this:

"This is a character string."

To include a double-quote in the string, precede it with a backslash (‘\’),
like this:

"His name was \"Leroy\", but nobody ever called him that."
Finally, to include a backslash in a string, double it:
"Some people use backslash (’\\’) to mean set difference."

COOL strings may not include special ASCII characters like carriage-return,
line-feed, bell, etc.
Objects are the backbone of the COOL database and, as such, deserve a
great deal of discussion; the next section is devoted to them. Every object
has a number, unique to that object. In programs, we write a reference to
a object by putting a hash mark (‘#’) followed by the object’s number, like
this:

#495
There is one special object number used for an error value; #-1.

4 COOLMUD Programmer’s Manual

COOLMUD allows servers to interconnect, and for objects to move between
servers. A visitor object is specified just like a local object and is appended
with an ampersand ‘@ and the name of the remote server:

#230east
#130Qunlucky

Errors are, by far, the least frequently used values in COOL. In the normal
case, when a program attempts an operation that is erroneous for some
reason (for example, trying to add a number to a character string), the server
stops running the program and prints an error message. It is possible for
a program to stipulate that such errors should not stop execution; instead,
the server should just let the value of the operation be an error value. The
program can then test for such a result and take appropriate recovery action.
In programs, error values are written as words beginning with ‘E_". The
complete list of error values, along with their associated messages, is as
follows:

E_DIV Division by zero

E_FOR For variable not a list
E_INTERNAL Internal error

E_INVIND Invalid indirection

E_MAXREC Maximum recursion exceeded
E_MESSAGE Message unparseable
E_METHODNF Method not found

E_NONE No error

E_OBJNF Object not found
E_PERM Permission denied
E_RANGE Range error

E_SERVERDN Server down
E_SERVERNF Server not found
E_STACKOVR Stack overflow
E_STACKUND Stack underflow
E_TIMEOUT Timed out
E_TYPE Type mismatch
E_VARNF Variable not found

The final kind of value in COOL programs is lists. A list is a sequence of
arbitrary COOL values, possibly including other lists. In programs, lists are
written with each of the elements in order, separated by commas, the whole
enclosed in curly braces (‘{” and ‘}’). For example, a list of the names of the
days of the week is written:

{"Sunday", "Monday", "Tuesday", "Wednesday",
"Thursday", "Friday", "Saturday"}

Note that it doesn’t matter that we put a line-break in the middle of the
list. This is true in general in COOL: anywhere that a space can go, a line-
break can go, with the same meaning. The only exception is inside character
strings, where line-breaks are not allowed.

Chapter 1: The COOLMUD database 5

1.2 Objects

Objects are, in a sense, the whole point of the COOL programming language.
They are used to represent objects in the virtual reality; for example, players,
rooms, exits, and other concrete things.

Numbers always exist, in a sense; you have only to write them down in
order to operate on them. With objects it is different. The object with
number ‘#958’ does not exist just because you write down its number. An
explicit operation, the clone () function described later, is required to bring
an object into existence. Symmetrically, once created, an object continues to
exist until is explicitly destroyed by the destroy () function (also described
later).

The identifying number associated with an object is unique to that object.
It is assigned when the object is created and will never be reused, even if the
object is destroyed. For example, if we create an object and it is assigned
the number ‘#1076’, the next object created will be assigned ‘#1077, even
if ‘#1076’ was destroyed in the meantime.

Every object is made of four pieces that together define its behavior; its
parents, variables, methods, and verbs.

1.2.1 Parents

Except for the root object (‘#1’) all objects have one or more parents. COOL-
MUD has multiple inheritance, so an object can have more than one “paral-
lel” parent. When an object is created, it is cloned from some other object.
The child object inherits all of the methods and variables from the parents
of the object it was cloned from. The object it was cloned from isn’t its
parent, but it has the same parents as that object. After an object is cloned
it can have its parents changed by either reprogramming the entire object
or by calling the built-in chparents() function.

The parent/child hierarchy is used for classifying objects into general classes
and then sharing behavior among all members of that class. For example,
the boot database contains an object representing a sort of “generic” room.
All other rooms are descendants (i.e., children or children’s children, or ...)
of that one. The generic room defines those pieces of behavior that are
common to all rooms; other may rooms specialize that behavior for their
own purposes. The notion of classes and specialization is the very essence
of what is meant by object-oriented programming.

1.2.2 Object variables

An object variable is a named “slot” in an object that can hold an arbitrary
COOL value. An object can have any number of variables, and which are
declared to be of a certain type.

Objects appear to have variables corresponding to every variable in its par-
ents’ objects. To use the jargon of object-oriented programming, this is a
kind of inheritance. If some parent object has a variable named foo, then it

6 COOLMUD Programmer’s Manual

appears that all of its children and thus its children’s children, and so on have
that variable. We say it “appears” to have all of its parents’ variables be-
cause you don’t have to declare any variables on a child object that are on its
parents; when you ask for the value of any of these variables the COOLMUD
server finds the variable on the nearest parent object and returns its value.
But when an object changes the value of one of these variables, the object
then gets its own permanent copy of the variable, which is then changed.
This behavior is typically referred to as “copy-on-write.”

An object may also have a new variable defined only on itself (and its de-
scendants). For example, an object representing a rock might have variables
indicating its weight, chemical composition, and/or pointiness, depending
upon how the rock is used in the virtual reality.

Variables on objects can only be read or modified when there are methods
that provide such access to the variables. For example, there are often
methods on objects that provide simple “read” access for variables:

method name
return name;
endmethod

For modifying variables, methods typically implement some permission check
to see if the variable can be modified by the caller:

method set_name
if (!(caller in owners))
raise (E_PERM) ;
endif
name = args[1];
endmethod /* set_name */

In the above example the check is quite simple. Since methods implement the
permission scheme, access is completely controlled by them. It is important
to note that the COOLMUD server provides no “override” on variable access;
even the wizards can be excluded access to a variable, which the above piece
of code is an example of.

1.2.3 Methods

The other piece making up an object is its methods. A method is a named
COOL program that is associated with a particular object. Methods are
also used to implement commands that a player might type; for example, in
the boot database, there is a method on all objects representing containers
that implements commands of the form ‘put object in container’. COOL
methods can also invoke methods defined on objects. Some methods are
designed to be used only from within COOL code; they do not correspond
to any particular player command at all. Thus, methods in COOL are like
the ‘procedures’ or ‘functions’ found in other programming languages.

Chapter 1: The COOLMUD database 7

Method variables

Methods can have their own variables. They are untyped and are local to
the method; when the method finishes running, its variables cease to exist.
Method variables are declared with the var declaration.

1.2.4 Verbs

In order for an object’s method to be used as a command by players, the
method must be “bound” to a verb. If a method is not bound to a verb it
can’t be accessed by players, only by COOL code. In a later section we’ll go
over how to bind a method to a verb.

When a method is run as a verb, any words following the verb are given to
the method as arguments. For example, if object xyz has a 1ook verb bound
to the look_verb method, and a player types ‘look at xyz with glass’ the
look_verb method on the xyz object will be run with the arguments at,
xyz, with, and glass. If there is another object in the room or carried by
the player, named glass, with a a look verb, it may also be called, and with
the same arguments. Since every object in the room or carried by the player
with a look verb may get called, each object must check the arguments to
see if they were the one the look was meant for. When an object’s look
verb determines that it’s the object that matches, it returns 0 as its value
to tell the server that no further look verbs on the other objects need to be
called.

An object’s verb binding can specify different words to invoke the method
the verbs are bound to. For example, the words poke and prod can both
be verbs bound to the poke_verb method. Then a player could type either
‘poke xyz’ or ‘prod xyz’.

Verb bindings can also be set up so that in addition to the verb, another
word must be typed as part of the command. Typically the second word is
a preposition; for example, ‘with’, ‘in’, ‘to’, ‘from’, and so on. This allows
you to set up commands like ‘put money in jar’ and ‘rub lamp with rag’.

Chapter 2: The COOL programming language 9

2 The COOL programming language

The COOL programming language is a relatively small and simple object-
oriented language designed to be easy to learn for most non-programmers.

Having given you enough context to allow you to understand exactly what
COOL code is doing, we’ll see what COOL code looks like and what it means.
We'll begin with the syntax and semantics of expressions, those pieces of
code that have values. After that, we’ll go over statements, the next level
of structure up from expressions. Next, we’ll discuss the concept of a task,
the kind of running process initiated by players entering commands, among
other causes. Finally, we’ll go over the built-in functions available to COOL
code and describe what they do.

2.1 Comments

You can include bits of text in your COOL program that are ignored by
the server. The idea is to allow you to put in notes to yourself and others
about what the code is doing. To add a comment you use a character string
literal as a statement. For example, the sentence about peanut butter in the
following code is essentially ignored during execution but will be maintained
in the database:

for x in (#0.players)
"Grendel eats peanut butter!";
player:tell(x.name, " (", x, ")");
endfor

2.2 Expressions

Expressions are those pieces of COOL code that generate values; for example,
the COOL code

3+ 4

is an expression that generates (or “has” or “returns”) the value 7. There
are many kinds of expressions in COOL, all of them discussed below.

2.2.1 Errors

Most kinds of expressions can be used improperly in some way. For example,
the expression

3/0
is improper because it tries to divide by zero. In such cases, COOL “raises”

an error value (E_DIV in this example), which causes the method’s code to
be aborted and a message to be printed on the player’s screen.

10 COOLMUD Programmer’s Manual

2.2.2 Literals

The simplest kind of expression is a literal COOL value, just as described in
the section on values at the beginning of this document. For example, the
following are all expressions:

17

#893

"This is a character string."

E_TYPE

{llThisll, llisll’ llall, |I1istll’ “Of", "WOI‘dS"}

Note that the list expression contains other expressions, several character
strings in this case. In general, those expressions can be of any kind at all,
not necessarily literal values. For example,

{3 +4, 3 -4, 3* 4}
is an expression whose value is the list ‘{7, -1, 12}’
COOL also has some constants, which are returned by the typeof () built-in
function:

NUM 0BJ STR
LIST ERR
Their meanings are as follows:
NUM a number, the type code for numbers
LIST a number, the type code for lists
STR a number, the type code for strings
0BJ a number, the type code for objects
ERR a number, the type code for error values

2.2.3 Variables

As discussed earlier, it is possible to store values in variables on objects;
the variables will keep those values forever, or until another value is put
there. It’s often useful to have a place to put a value for just the duration
of the execution of a method; COOL provides method (local) variables for
this purpose.

Method variables are named places to hold values; you can get and set the
value in a given method variable as many times as you like. Method variables
are temporary, though; they only last while a particular method is running;
after it finishes, all of the method variables cease to exist and the values
are forgotten. The method variables set in one method are not visible to
the code of other methods. When a method begins executing, the method
variables are initialized to 0.

The name for object and method variables is made up of letters, digits, and
the underscore character (‘_") and cannot begin with a digit. The following
are all valid variable names:

Chapter 2: The COOL programming language 11

foo

_foo

this2that

ME68000

two_words

This_is_a_very_long_multiword_variable_name
Note that, along with almost everything else in COOL, the case of the letters
in variable names is insignificant. For example, these are all names for the
same variable:

fubar

Fubar

FUBAR

fUbAr
A variable name is itself an expression; it’s value is the value of the named
variable.

To change the value stored in a variable, use an assignment statement:
variable = expression

For example, to change the variable named ‘x’ to have the value 17, you
would write ‘x = 17;’. An assignment statement changes the value of of the
named variable.

COOL also has some predefined pseudo-variables, they are read-only:
player this caller
args

Their values are as follows:

player an object, the player who typed the command that started the
task that involved running this piece of code.

this an object, the object on which the currently-running method
was found.

caller an object, the object on which the method that called the
currently-running method was found. For the first method called
for a given command, caller has the same value as player.

args usually a list, the arguments given to this method. The parse
method on the player object gets the entire command line typed
by the player, it hands it off to call_verb, which splits it into
words, which is passed as a list of words to a method bound to
the verb.

2.2.4 Arithmetic

All of the usual simple operations on numbers are available to COOL pro-
grams:

+ - * / %

12 COOLMUD Programmer’s Manual

These are, in order, addition, subtraction, multiplication, division, and re-
mainder. In the following table, the expressions on the left have the corre-
sponding values on the right:

5+ 2 = 7
5 -2 = 3
5 % 2 = 10
5/ 2 = 2
5% 2 = 1
5 % -2 = 1
-5 7% 2 = -1
5% -2 = -1
-6 +2) = -7

Note that division in COOL throws away the remainder and that the result
of the remainder operator (‘%’) has the same sign as the left-hand operand.
Also, note that ‘=’ can be used without a left-hand operand to negate a
numeric expression.

The ‘+’ operator can also be used to append two strings. The expression
"fOO" + llbarll

has the value
"foobar"

Unless both operands to an arithmetic operator are numbers (or, for ‘+’,
both strings), the error value E_TYPE is raised. If the right-hand operand for
the division or remainder operators (‘/” or ‘%) is zero, the error value E_DIV
is raised.

2.2.5 Comparing values

Any two values can be compared for equality using ‘=="and ‘!=’. The first
of these returns 1 if the two values are equal and 0 otherwise; the second
does the reverse:

3 ==
31=4
"foo" == "Foo"
#34 1= #34
{1, #34, "foo"} == {1, #34, "FoO"}
E_DIV == E_TYPE
3 !I= "foo" 1
Note that comparison of strings is case-insensitive; that is, it does not dis-

tinguish between the upper- and lower-case version of letters. To perform a
case-sensitive comparison, use the strcmp function described later.

R R

Numbers, object numbers, strings, and error values can also be compared
for ordering purposes using the following operators:

< <= >= >

Chapter 2: The COOL programming language 13

meaning “less than,” “less than or equal,” “greater than or equal,” and
“greater than,” respectively. As with the equality operators, these return 1
when their operands are in the appropriate relation and 0 otherwise:

3<4 = 1
#34 >= #32 = 1
"foo" <= "Boo" = 0

Note that, as with the equality operators, strings are compared case-
insensitively. If the operands to these four comparison operators are of
different types, or if they are lists, then E_TYPE is raised.

2.2.6 Conditional expressions
There is a notion in COOL of true and false values; every value is one or
the other. The true values are as follows:

e all numbers other than zero

e all non-empty strings (i.e., other than ‘""”)

e all non-empty lists (i.e., other than ‘{}’)

e all non-negative object numbers. (Note that a negative object number

doesn’t necessarily mean that such an object exists.)

All other values are false:

e zero

e the empty string (‘""’)

e the empty list (‘{}’)

e all positive object numbers

e all error values
There are four kinds of expressions and two kinds of statements that depend
upon this classification of COOL values. In describing them, we sometimes

refer to the truth value of a COOL value; this is just true or false, the
category into which that COOL value is classified.

To negate the truth value of a COOL value, use the ‘!’ operator:

! expression
If the value of expression is true, ‘!’ returns 0; otherwise, it returns 1:
I "foo" = 0

1 3>>4) = 1
The negation operator is usually read as “not.”

It is frequently useful to test more than one condition to see if some or all
of them are true. COOL provides two operators for this:

expression-1 && expression-2
expression-1 || expression-2
These operators are usually read as “and” and “or,” respectively.

The ‘&& operator first evaluates expression-1. If it returns a true value,
then expression-2 is evaluated and its value becomes the value of the ‘&&’

14 COOLMUD Programmer’s Manual

expression as a whole; otherwise, the value of expression-1 is used as the
value of the ‘&&’ expression. Note that expression-2 is only evaluated if
expression-1 returns a true value.

The ‘| |” operator works similarly, except that expression-2 is evaluated only
if expression-1 returns a false value.

These two operators behave very much like “and” and “or” in English:

1 && 1 = 1
0 && 1 = 0
0 & O = 0
1111 = 1
0 1ll 1 = 1
o1l o0 = 0
17 <= 23 & 23 <=27 = 1

2.2.7 Lists and strings

As was mentioned earlier, lists can be constructed by writing a comma-
separated sequence of expressions inside curly braces:

{expression-1, expression-2, ..., expression-N}
The resulting list has the value of expression-1 as its first element, that of
expression-2 as the second, etc.

{3<4,3<=4,3>>4, 3>4 = {1, 1, 0, O}
Both strings and lists can be seen as ordered sequences of COOL values.
In the case of strings, each is a sequence of single-character strings; that
is, one can view the string ‘"bar"’ as a sequence of the strings ‘"b"’, ‘"a"’,
and ‘"r"’. COOL allows you to refer to the elements of lists and strings by
number, the index of that element in the list or string. The first element in
a list or string has index 1, the second has index 2, and so on.

Extracting an Element from a List or String

The indexing expression in COOL extracts a specified element from a list or
string:

expression-1[expression-2]
First, expression-1 is evaluated; it must return a list or a string (the se-
quence). Then, expression-2 is evaluated and must return a number (the
index). If either of the expressions returns some other type of value, E_TYPE
is raised. The index must be between 1 and the length of the sequence,
inclusive; if it is not, then E_RANGE is raised. The value of the indexing
expression is the index’th element in the sequence.

llfobll [2] = "O“

"fOb"[l] = Ilfll

{#12, #23, #34}[3] = #34
Note that there are no legal indices for the empty string or list, since there
are no numbers between 1 and 0 (the length of the empty string or list).

Chapter 2: The COOL programming language 15

Extracting a subsequence of a list or string
The range expression extracts a specified subsequence from a list or string:

expression-1[expression-2..expression-3]
expression-1[..expression-3]
expression-1[expression-2..]

The three expressions are evaluated in order. Expression-1 must return a list
or string (the sequence) and the other two expressions must return numbers
(the low and high indices, respectively); otherwise, E_TYPE is raised. If
the low index is greater than the high index, then the empty string or list is
returned, depending on whether the sequence is a string or a list. Otherwise,
both indices must be between 1 and the length of the sequence; E_RANGE is
raised if they are not. A new list or string is returned that contains just the
elements of the sequence with indices between the low and high bounds. As
the second and third forms show, you can leave off either the low or high
index; you’ll automatically get 1 if you leave off the low index, and the value
of length of the sequence if you leave off the high index.

"foobar" [2..6] = "oobar"
"foobar" [2..] = "oobar"
"foobar" [3..3] = "o"
"foobar"[..3] = "foo"

"foobar" [17..12] = "

{"one", "two", "three"}[1..2] = {"one", "two"}
{"one", "two", "three"}[3..3] = {"three"}
{"one", "two", "three"}[17..12] = {}

Other operations on lists and strings

The membership expression tests whether or not a given COOL value is an
element of a given list, or a substring of a given string and, if so, with what
index:

expression-1 in expression-2

Expression-2 must return a list or string, otherwise, E_TYPE is raised. If
the value of expression-1 is in that list or string, then the index of its first
occurrence in the list or string is returned; otherwise, the in expression
returns 0.

2 in {5, 8, 2, 3} =
7 in {5, 8, 2, 3} =
"bar" in {"Foo", "Bar", "Baz"} =
"bit" in "frobitz" = 4

N O W

Note that the membership operator is case-insensitive in comparing strings,
just like the comparison operators. Note also that since it returns zero only
if the given value is not in the given list or string, the in expression can be
used either as a membership test or as an element or substring locator.

16 COOLMUD Programmer’s Manual

2.2.8 Calling built-in functions and other methods

COOL provides a number of functions for performing a variety of operations;
a complete list, giving their names, arguments, and semantics, appears in a
separate section later.
The syntax of a call to a built-in function is as follows:
name(expr-1, expr-2, ..., expr-N)
where name is the name of one of the built-in functions. The expressions
between the parentheses, called arguments, are each evaluated in turn and
then given to the named function. Most functions require that certain of
the arguments have certain specified types (e.g., the lengthof () function
requires a list or a string as its argument); E_TYPE is raised if any argument
has the wrong type.
Object methods can also call other methods, usually using this syntax:
expr-0.name(expr-1, expr-2, ..., expr-N)
or, if there aren’t any arguments you can use either of the following 2 forms:

expr-0.name()

expr-0.name
Expr-0 must return an object number; E_TYPE is raised otherwise; if expr-
0 doesn’t evaluate to an object value, E_INVIND is raised. If the object
with that number does not exist, E_0BJNF is raised. If this task is too deeply
nested in methods calling methods calling methods, then E_MAXREC is raised;
the limit in COOLMUD at this writing is 50 levels. If neither the object nor
any of its ancestors defines a method matching the given name, E_METHODNF
is raised. Otherwise, if none of these things happens, the named method on
the given object is called; the various built-in variables have the following
initial values in the called method:

this an object, the value of expr-0

args a list, the values of expr-1, expr-2, etc.

caller an object, the value of this in the calling method

player an object, the same value as it had initially in the calling method.

Note that these are really pseudo-variables; they’re read-only and you can’t
assign new values to them.

We said “usually” at the beginning of the previous paragraph because that
syntax is used when the name follows the rules for allowed variable names.
There is also a syntax allowing you to compute the name of the method:

expr-0. (expr-00) (expr-1, expr-2, ..., expr-N)
The expression expr-00 must return a string; E_TYPE is raised otherwise.

2.2.9 Parentheses and operator precedence

As shown in a few examples above, COOL allows you to use parentheses to
make it clear how you intend for complex expressions to be grouped. For
example, the expression

Chapter 2: The COOL programming language 17

3 x (4 +5)
performs the addition of 4 and 5 before multiplying the result by 3.

If you leave out the parentheses, COOL will figure out how to group the
expression according to certain rules. The first of these is that some operators
have higher precedence than others; operators with higher precedence will
bind more tightly to their operands than those with lower precedence. For
example, multiplication has higher precedence than addition; thus, if the
parentheses had been left out of the expression in the previous paragraph,
COOL would have grouped it as follows:

(3 *x4) +5

The table below gives the relative precedence of all of the COOL operators;
operators on higher lines in the table have higher precedence and those on
the same line have identical precedence:

! - (without a left operand)

* / A

+ -

== 1= < <= > >= in
&&

Thus, the horrendous expression
x=a<b&c>d+exf?winy| -q-r

would be grouped as follows:
x=(((@a<b) & (c> @+ (e *£))))? (winy) | ((-q) -

It is best to keep expressions simpler than this and to use parentheses liber-
ally to make your meaning clear to other humans.

2.3 Statements

Statements are COOL constructs that, in contrast to expressions, perform
some useful, non-value-producing operation. For example, there are several
kinds of statements, called ‘looping constructs’, that repeatedly perform
some set of operations.

2.3.1 Simple statements

The simplest kind of statement is the null statement, consisting of just a
semicolon:

It doesn’t do anything at all.
The next simplest statements are also some of the most common, the ex-
pression statement and the assignment statement:

expression;

var = expression;

)l

18 COOLMUD Programmer’s Manual

For the expression statement, the given expression is evaluated and the re-
sulting value is ignored. The typical expression for such statements is the
method call. Of course, there’s no use for such a statement unless the eval-
uation of expression has some side-effect, such as printing some text on
someone’s screen, etc. For the assignment statement, the variable gets the
new value.

2.3.2 Conditional execution

The if statement allows you to decide whether or not to perform some
statements based on the value of an expression:
if (expression)
statements
endif

Expression is evaluated, if it returns a true value, the statements are exe-
cuted; otherwise, nothing is done.

Sometimes you’ll want to perform one set of statements if some condition is
true and some other set of statements otherwise. The optional else phrase
in an if statement allows you to do this:
if (expression)
statements-1
else
statements-2
endif

This statement is executed just like the previous one, except that statements-
1 are executed if expression returns a true value and statements-2 are exe-
cuted otherwise.
Sometimes, you’ll need to test several conditions in a kind of nested fashion:
if (expression-1)
statements-1
else
if (expression-2)
statements-2
else
if (expression-3)
statements-3
else
statements—-4
endif
endif
endif

Such code can easily become tedious to write and difficult to read. COOL
provides a somewhat simpler notation for such cases:
if (expression-1)
statements-1

Chapter 2: The COOL programming language 19

elseif (expression-2)
statements-2

elseif (expression-3)
statements-3

else
statements—-4

endif

Note that elseif is written as a single word, without any spaces. This sim-
pler version has the very same meaning as the original: evaluate expression-i
for i equal to 1, 2, and 3, in turn, until one of them returns a true value;
then execute the statements-i associated with that expression. If none of the
expression-i return a true value, then execute statements-4.

Any number of elseif phrases can appear, each having this form:
elseif (expression) statements
The complete syntax of the if statement is as follows:

if (expression)

statements
zero-or-more—elseif-phrases
an-optional-else-phrase
endif

2.3.3 Iteration

COOL provides three different kinds of looping statements, allowing you to
have a set of statements executed (1) once for each element of a given list,
(2) once for each number in a given range, and (3) over and over until a
given condition stops being true.

To perform some statements once for each element of a given list, you use
this syntax:

for variable in (expression)
statements
endfor

The expression is evaluated and should return a list; if it does not, E_TYPE is
generated. The statements are then executed once for each element of that
list in turn; each time, the given variable is assigned the value of the element
in question. For example, consider the following statements:

odds = {1, 3, 5, 7, 93};

evens = {};

for n in (odds)

evens = listappend(evens, n + 1);
endfor

The value of the variable evens after executing these statements is the list
{2, 4, 6, 8, 10}

20 COOLMUD Programmer’s Manual

The syntax for performing a set of statements once for each number in a
given range is as follows:

for variable in [expression-1..expression-2]
statements
endfor

The two expressions are evaluated and should return numbers; E_TYPE is
raised otherwise. The statements are then executed, once for each integer
greater than or equal to the value of expression-1 and less than or equal to
the result of expression-2, in increasing order. Each time, the given variable
is assigned the integer in question. For example, consider the following
statements:

evens = {};
for n in [1..5]
evens = listappend(evens, 2 * n);
endfor
The value of the variable evens after executing these statements is the same
as in the previous example, the list

{2, 4, 6, 8, 10}
The final kind of loop in COOL executes a set of statements repeatedly as
long as a given condition remains true:

while (expression)
statements
endwhile

The expression is evaluated and, if it returns a true value, the statements
are executed; then, execution of the while statement begins all over again
with the evaluation of the expression. That is, execution alternates between
evaluating the expression and executing the statements until the expression
returns a false value. The following statements have precisely the same effect
as the loop just shown above:

evens = {};

n=1;

while (n <= 5)

evens = listappend(evens, 2 * n);
n=n-+1;

endwhile
With each kind of loop, it is possible that the statements in the body of
the loop will never be executed at all. For iteration over lists, this happens
when the list returned by the expression is empty. For iteration on numbers,
it happens when expression-1 returns a larger number than expression-2.
Finally, for the while loop, it happens if the expression returns a false value
the first time it is evaluated.
Inside either of the for or while iteration loops you can have a break or
continue statement. The break statement causes execution of the for or
while loop to end prematurely; execution continues with the first statement

Chapter 2: The COOL programming language 21

after the endfor or endwhile. The continue statement causes all state-
ments after it in the iteration loop to be skipped and execution continues
with the next iteration of the loop. If you have for or while statements
inside of other for or while statements you can specify which iteration loop
should be broken out of by following break with a number specifying the
loop level, where 1 means the current loop. Likewise, for the continue state-
ment you can specify which iteration loop to to skip the rest of by following
continue with a number specifying the loop level.

2.3.4 Returning a value from a method

The COOL program in a method is just a sequence of statements. Normally,
when the method is called, those statements are simply executed in order and
then the number 0 is returned as the value of the method-call expression.
Using the return statement, one can change this behavior. The return
statement has one of the following two forms:

return;
or
return expression;

When it is executed, execution of the current method is terminated im-
mediately after evaluating the given expression, if any. The method-call
expression that started the execution of this method then returns either the
value of expression or the number 0, if no expression was provided.

2.3.5 Executing statements at a later time

It is sometimes useful to have some sequence of statements execute at a later
time, without human intervention. For example, one might implement an
object that, when thrown into the air, eventually falls back to the ground;
the throw verb on that object should arrange to print a message about the
object landing on the ground, but the message shouldn’t be printed until
some number of seconds have passed.
The at statement is intended for just such situations and has the following
syntax:

at (expression)

statements

endat
The at statement first executes the expression, which must return a number;
call that number n. It then creates a new COOL task that will, after at least
n seconds, execute the statements. When the new task begins, all variables
will have the values they had at the time the at statement was executed.
The task executing the at statement immediately continues execution.

2.3.6 Errors

Statements do not return values, but some kinds of statements can be used
improperly and thus generate errors. If such an error is generated in a

22 COOLMUD Programmer’s Manual

method that is not ignoring that particular error, then an error message is
printed to the current player and the current command (or task, really) is
aborted. If the method is ignoring that error then the error is ignored and
the statement that generated it is simply skipped; execution proceeds with
the next statement.

(Need to add stuff about raise here as well.)

2.4 Built-in functions

There are a number of built-in functions available to COOL programmers.
Each one is discussed in detail in this section. The presentation is broken
into subsections by grouping functions with similar or related uses.

For most functions, the expected types of the arguments are given; if the
arguments are not of these types, E_TYPE is raised. Some arguments can be
of any type; in such cases, no type specification is given for the argument. For
most functions, the type of the result of the function is given. Some functions
do not return a result; in such cases, the specification void is used. Some
functions can return a result of any type, for them the specificaton value is
used.

Most functions take a fixed number of arguments and, in some cases, one
or two optional arguments. If a function is called with too many or too few
arguments, E_ARGS is raised.

2.4.1 Passing execution

One of the most important facilities in an object-oriented programming lan-
guage is ability for a child object to make use of a parent’s implementation
of some operation, even when the child provides its own definition for that
operation. The pass() function provides this facility in COOL.

Often it is useful for a child object to define a method that augments the be-
havior of a method on its parent object. For example, in the boot database,
the DESCRIBED object (which is an ancestor of most other objects) defines a
method called description that simply returns the value of description;
this method is used by the implementation of the look command. In many
cases, a programmer would like the description of some object to include
some non-constant part; for example, a sentence about whether or not the
object was ‘awake’ or ‘sleeping’. This sentence should be added onto the end
of the normal description. The programmer would like to have a means of
calling the normal description method and then appending the sentence
onto the end of that description. The function pass() is for such situations.

Thus, in the example above, the child-object’s description method might
have the following implementation:
return pass() + " It is " + (this.awake 7 "awake." | "sleeping.");l}
That is, it calls its parent’s description method and then appends to the
result a sentence whose content is computed based on the value returned by
a method on the object.

Chapter 2: The COOL programming language 23

value pass (arg, ...) [Function]

value pass (arg, ...) to object [Function]
pass calls the method with the same name on the parent of the object
who’s method is running. The arguments given to pass are the ones
given to the called method and the returned value of the called method
is returned from the call to pass. The initial value of this in the called
method is the same as in the calling method.

Since COOL provides for multiple inheritence, the second form of the
pass () call can be used to specify which parent’s method to call.

2.4.2 Type-checking and conversion

num typeof (value) [Function]
Takes any COOL value and returns a number representing the type of
value. The result is the value of one of these built-in constants: NUM, STR,
LIST, 0BJ, or ERR. Thus, one usually writes code like this:

if (typeof(x) == LIST)
and not like this:
if (typeof(x) == 3)
because the former is more readable than the latter.

str tostr (value) [Function]
Converts the given COOL value into a string and returns it.
tostr(17) = "T"
tostr (#17) = 1T
tostr("foo") = "foo"
tostr({1, 2}) = "{1, 2"
tostr (E_PERM) = "Permission denied"

num tonum (value) [Function]
Converts the given COOL value into a number and returns it. Object
numbers are converted into the equivalent numbers, strings are parsed as
the decimal encoding of a number, and errors are converted into numbers.
tonum () raises E_TYPE if value is a list. If value is a string but the string
does not contain a syntactically-correct number, then tonum() returns 0.

tonum (#34) = 34
tonum("34") = 34
tonum(" - 34 ") = 34
tonum (E_TYPE) = 1

Notice that when parsing digits, spaces are ignored.

obj toobj (value) [Function]
Converts the given COOL value into an object number and returns it.
The conversions are very similar to those for tonum() except that for
strings, the number may be preceded by ‘#’.

24 COOLMUD Programmer’s Manual

toobj("34") = #34
toobj ("#34") = #34
toobj ("foo") = #0
toobj ({1, 2}) E_TYPE
err toerr (value) [Function]

Converts the given COOL value into an error value and returns that error
value.

2.4.3 Operations on strings

list explode (str string [, str string]) [Function]
Break string into a list of strings. By default, explode breaks on spaces;
the optional second argument is the character to break on.

num lengthof (str string) [Function]
Returns the number of characters in string. It is also permissible to pass
a list to lengthof (); see the description in the next section.
lengthof ("foo") = 3
lengthof ("") = 0

str crypt (str text [, str salt]) [Function]
Encrypts the given text using the standard UNIX encryption method.
If provided, salt should be a two-character string used for the extra en-
cryption “salt” in the algorithm. If salt is not provided, a random pair
of characters is used. The salt used is also returned as the first two
characters of the encrypted string.

Aside from the possibly-random selection of the salt, the encryption al-
gorithm is deterministic. You can test whether or not a given string is
the same as the one used to produced a given piece of encrypted text;
extract the first two characters of the encrypted text and pass the candi-
date string and those two characters to crypt (). If the result is identical
to the given encrypted text, you’ve got a match.

crypt ("foobar") = "J3fSFQfgkp26w"

crypt("foobar", "J3") = "J3£SFQfgkp26w"

crypt ("mumble", "J3") = "J3D0.dh.jjmWQ"

crypt("foobar", "J4") = "J4AcPx0J4ncq2"

list match (str subject, str pattern [, token]) [Function]

list match_full (str subject, str pattern, [, token]) [Function]
Looks for pattern as a substring of subject, where pattern must start on
a word boundary. Word are separated by spaces, or by token if given.
Returns 1 if a match was found, 0 if not.

match("foo bar baz", "foo") =1
match("foo bar baz", "f") =1
match("foo bar baz", "o") = 0
match("large green monster", "green") =1

Chapter 2: The COOL programming language 25

match("large green monster", "gre") =1

match("large*green*monster", "monster", "*") = 1
match_full is the same as match, except that pattern must match a full
word within subject. (Useful for TinyMUD-style exit matching.)

match_full("foo bar baz", "foo") =1
match_full("foo bar baz", "f") = 0
match_full("out;back;exit;leave", "out", ";") = 1
match_full("out;back;exit;leave", "ou", ";") = 0

2.4.4 Operations on lists

num lengthof (list 1ist) [Function]
Returns the number of elements in list. It is also permissible to pass a
string to lengthof (); see the description in the previous section.

lengthof ({1, 2, 3}) = 3

lengthof ({}) = 0
list listinsert (list 1ist, value |, num index|) [Function]
list listappend (list 1ist, value |, num index|) [Function]

These functions return a copy of list with value added as a new element.
listinsert() and listappend() add value before and after (respec-
tively) the existing element with the given index, if provided.
The following three expressions always have the same value:
listinsert(list, element, index)
listappend(list, element, index - 1)
If index is not provided, then listappend() adds the value at the end
of the list and 1listinsert() adds it at the beginning.

x =41, 2, 3};

listappend(x, 4, 2) = {1, 2, 4, 3%}
listinsert(x, 4, 2) = {1, 4, 2, 3}
listappend(x, 4) = {1, 2, 3, 4}
listinsert(x, 4) = {4, 1, 2, 3}
list listdelete (list 1ist, num index) [Function]

Returns a copy of list with the indexth element removed. If index is not
in the range ‘[1..length(list)]’, E_RANGE is raised.

X = {"fOO", "bar", "baz"};

listdelete(x, 2) = {"foo", "baz"}

list listassign (list 1ist, value, num index) [Function]
Returns a copy of list with the indexth element replaced by value. If
index is not in the range ‘[1..length(1ist)]’, E_RANGE is raised.
X = {llfooll, ||barll’ ||bazll};
listassign(x, "mumble", 2) = {"foo", "mumble", "baz"}

26 COOLMUD Programmer’s Manual

list setadd (list 1ist, value) [Function]

list setremove (list 1ist, value) [Function]
Returns a copy of list with the given value added or removed, as appro-
priate; list is treated as a mathematical set. setadd() only adds value
if it is not already an element of list. value is added at the end of the
resulting list, if at all. Similarly, setremove() returns a list identical to
list if value is not an element. If value appears more than once in list,
only the first occurrence is removed in the returned copy.

setadd ({1, 2, 3}, 3) = {1, 2, 3}
setadd({1, 2, 3}, 4) = {1, 2, 3, 4}
setremove ({1, 2, 3}, 3) = {1, 2}
setremove ({1, 2, 3}, 4) = {1, 2, 3}
setremove ({1, 2, 3, 2}, 2) = {1, 3, 2}
2.4.5 Operations on objects
obj clone () [Function]

Clone the current object. A new object is created, whose parent is the
current object. Returns the object ID of the new object. If the current
object no longer exists (ie., has been destroyed), ‘#-1’ is returned.

void destroy () [Function]
Destroy the current object. The object itself is responsible for cleaning
up any references to itself prior to this call. This might include removing
any contained objects, re-parenting or destroying any instances of it, etc.

void chparents (list 1ist) [Function]

void call_verb (str string) [Function]
call_verb isn’t a function, it’s a special method; when an object receives
the call_verb message, the server intercepts it and calls the appropriate
verb. The argument should be the command string to be parsed, which
is then matched against each verb on the object. If a match is found, the
associated method is called, with the parsed results in args. (args[1]
= verb, args[2] = dobj, args[3] = prep, args[4] = iobj).

void lock (str string) [Function]
This function is used to lock an object, to prevent another execution
stream from modifying the object before the current stream is finished
with it (see the section on locking). The argument is an arbitrary string,
the name of the lock to place on the object. Locks placed by an execution
thread remain in effect until a corresponding unlock() call, or until the
thread terminates.

void rm_verb (str verbname) [Function]
Removes the first verb named verbname from the current object. The
argument may also be a string representing the number indexing the verb
to be removed (starting at 0). eg., ‘rm_verb("3")’ would remove the 4th
verb.

Chapter 2: The COOL programming language 27

void rm_method (str methodname) [Function]
Removes the indicated method from the current object. Note that COOL-
MUD has special provision to allow a method to remove itself and con-
tinue executing. It won’t be actually destroyed until the method finishes.

void rm_var (str variablename) [Function]
Removes the indicated variable from the current object.

void unlock (str string) [Function]
Removes the indicated lock from the current object. If any execution
threads are waiting for this lock to be removed, they will execute.

void add_verb (str verbname, str preposition, str [Function]
methodname)

Adds a verb to the current object. The first argument is the name of

the verb. The second argument is the preposition, or ‘""’ for none. The

third argument is the name of the method to call in the current object
when the verb gets triggered. The verb is added to the end of the object’s
verb list, unless a verb with the same name and no preposition exists, in
which case it is inserted before that verb. This prevents a verb with no
preposition masking one with a preposition.

void setvar (str string, value) [Function]
Sets a variable, specified in string, on the current object to value. E_VARNF
is raised if the variable doesn’t exist, and E_TYPE is raised if there’s a type
mismatch (either between an existing variable, or an inherited one).

list verbs () [Function]
Returns a list of verbs on the current object. Each element of the list is
a 3-element list, consisting of 3 strings: the verb name, the preposition,
and the method to call.

list vars () [Function]
Returns a list of variables on the current object. Each element of the list
is a string containing the name of the variable.

value getvar (str variablename) [Function]
Gets the value of the indicated variable on the current object. This
allows the use of an arbitrary string to get the value of a variable. (eg.,
‘getvar ("abc" + "def")’)

list methods () [Function]
Returns a list of methods on the current object. Each element of the list
is a string containing the name of the method.

num hasparent (obj object) [Function]
Returns a positive value if the current object has object as a parent. This
function looks recursively on all parents of the current object, so it will
return 1 if the object has object as a parent anywhere in its inheritance
tree, and 0 otherwise.

28 COOLMUD Programmer’s Manual

str spew_method (str methodname) [Function]
Returns a string containing the internal stack-machine code for method
methodname. This code is pretty unintelligible unless your brain works
in RPN. Even then, some instructions are hard to figure out, and there’s
not much point. Only for the habitually curious.

str list_method (str methodname [, num lineno [, num [Function]
fullbrackets [, num indent]]])

Returns a string containing the decompiled code for method methodname.
This works by turning the stack machine code back into readable form.
It does automatic indentation, line numbering, and smart bracketing (ie.,
it will use the minimum number of brackets when decompiling an ex-
pression). The three optional arguments are numeric arguments which
control the decompilation:

lineno Turns line numbering on and off.

fullbrackets
When on, dumb bracketing will be used in every expression.
Default is off, or smart bracketing.

indent The number of spaces to use in indenting the code.

void echo (str string) [Function]
Display string to the current object, a player.

void quit () [Function]
Disconnect the current object, a player.

void program ([obj object, str methodname]) [Function]
Enter programming mode. This sets a flag on the player’s descriptor such
that all input from the player is diverted to a temporary file. When the
player enters ‘.’, the file is compiled, and then erased. There can either
be no arguments, in which case the server expects a series of objects, or
two arguments, which should be the object and method to program. In
either case, the server currently uses a built-in set of permissions checks
to determine whether the player may reprogram that object: either they
must be in the object’s owners list, or in SYS_OBJ.wizards.

num serverof (obj object) [Function]
Returns a number representing the server ID of object. This ID is used
internally by the server, and has no meaning except that ID zero is the
local MUD. So the statement

if (!serverof (obj))
endif
would evaluate to true if object is a local object.

str servername (obj object) [Function]
Returns a string representing the server name part of object.

Chapter 2: The COOL programming language 29

2.4.6 Miscellaneous operations

num random (num n) [Function]
Returns a random value between 1 and n.

num time () [Function]
Returns the current time, represented as the number of seconds that have
elapsed since midnight on 1 January 1970, Greenwich Mean Time.

2.4.7 System functions

void shutdown () [Function]
Shuts down the MUD. The database is written, remote servers discon-
nected, and the COOLMUD process terminates.

void dump () [Function]
Syncs the cache to the database so that the database on disk is current.

void writelog (str string) [Function]
Writes string to the logfile, prepended by a timestamp.

num checkmen () [Function]
Returns a string showing the amount of memory dynamically allocated,
and how many chunks it was allocated in. If the server was not com-
piled with -DCHECKMEM, this function will return ‘"Memory checking
disabled."’

2.5 Syntax for object code

The syntax for the code of an object is as follows:

object objectname
parent declarations
verb declarations
variable declarations
method declarations
endobject

The syntax for an object name is the same as for variables, given above.

2.5.1 Parent declarations

The syntax for the parent declarations is as follows:
parents parent-1 , ... parent-n ;

2.5.2 Verb declarations

To bind a verb to a method you use the verb declaration:

verb string = method ;
verb string : string = method ;

30 COOLMUD Programmer’s Manual

2.5.3 Variable declarations

The syntax for the variable declarations is:

vartype var-1 , ... var-N ;
Where vartype is one of num, str, 1ist, or obj. You can have several lines
of variable declarations, one for each different type, and you don’t have to
have variables of the same type all declared on the same line; you can have
several variable declaration lines for the same type.

2.5.4 Method declarations

Method declarations look similar to object code:
method methodname
var local variable declarations

ignore errors
endmethod

Chapter 3: Differences between COOL and MOO 31

3 Differences between COOL and MOO

LambdaMOO objects consist of attributes, properties, and verbs. COOL-
MUD objects consist of variables and methods; there are no attributes.

COOLMUD object variables and methods are similar to LambdaMOO prop-
erties and verbs. With LambdaMOQO, all properties can be accessed by other
objects, as long as the permissions allow it, which they generally do except
for special properties that need to be hidden. With LambdaMOO properties
have an owner. With COOLMUD, object variables can only be accessed if
there is a method that provides acces, otherwise the object variable is inac-
cessible. COOLMUD object variables don’t have an owner, just the owners
of the object. With COOLMUD the object variables’ methods that provide
access to them also completely control any permission scheme.

COOLMUD methods don’t have a “debug” bit, methods can ignore specific
errors if they want to.

With COOLMUD command parsing is much more controlled by the objects.
For the sake of example, let’s ignore prepositions. When a palyer types a
command, some simple matching is done; all objects that have that “verb”
defined on them have the method that’s bound to that verb called. The
method is responsible for checking the arguments to see if they match its
object; e.g., args[2] is typically the object and args[1] is the verb. The
method returns 1 to signify that the arguments didn’t match for it and for the
parser to continue calling methods on other objects. The method returns 0
to specify that it was the desired object and the parser stops calling methods
on the rest of the objects.

With COOLMUD, verbs are “bound” to methods. Unless a method is bound
to a verb, it can’t be accessed by a player. With LambdaMOO there is a
“template” specified for the arguments when creating a verb and the tem-
plate ‘this none this’ is typically used to specify a verb that isn’t to be
accessed as a command typed by a player; that is, the verb will be used as a
subroutine. With COOLMUD you simply don’t bind the method to a verb
if you want it only used as a subroutine.

COOLMUD treats assignments as statements, not expressions. This means
that you can’t do looping constructs like

while ((var = name.method) != someval)

endwhile

Chapter 4: Setting up a new COOLMUD

4 Setting up a new COOLMUD

(explain format of .cfg file.)

4.1 Interconnecting COOLMUDs

33

Function Index

Function Index

A

call_verb.............iiiiiiii... 26
checkmem 29
chparent...................iiiiiia, 5
chparentsl 26
cloneooiiiiiiiii i 5, 26
CTYPL ot 24
D

destroy.....................LL 5, 26
dump ... 29
E

echo. ...l 28
else ... 18
elseif i 19
explode. 24

BetVar. ... 27
hasparentccooiiiiian. 27
A 18
S Pt 15
lengthof 16, 24, 25
list_method.......................... 28
listappend.................... 25
listassign........................ ... 25
listdeletecciiiiiininn. 25
listinsert.............c.oiiiinn.... 25

35
match........coiiiiii i 24
match_full........................... 24
methods............., 27
PSS it 23
PrOGraml.....oovviiiinininnnnnnnnnnnn.. 28
QUit ... 28
TandomM. .. oottt et 29
=X 7 s o OO 21
rm_method, 27
g1 T ol 27
M _VerD. .t 26
SEIVETINAME .« ..o vt e e e e ieenennnnns 28
serverof i 28
setadd......... ... 26
SEtremovVe . ..o vttt 26
SetVAT ..ottt 27
shutdown, 29
spew_method............... 28
stremp......... 12
time ... 29
0BT .t 24
TOnUM. ...t 23
toobj ... 23
BOStr . 23
typeof ... 10, 23
UN1OCK . ..ot 27

COOLMUD Programmer’s Manual

Variable Index

Variable Index

ATES o 11, 16
caller.............ooiiiiiiiinn.. 11, 16
E

E_ARGS 22
E_DIV .o 9,12
E_MAXREC 16
E_METHODNF it 16
E_OBINF.......oooii 16
E_RANGEoovuneeii. .. 14, 15
E_TYPE... 12, 13, 14, 15, 16, 19, 20, 22, 27
E_VARNF...........iii 27
ERR ... 10

37
L
LIST ..o 10
N
NUM ..o 10
O
OBJ . 10
P
player.................iiiia 11, 16
S
STR .ot 10
T

Concept Index

Concept Index

A

arithmetic 11
assignment statement 11

B

built-in functions.................. 16, 22

C

cloning......... il 5
comparing values...................... 12
conditional execution.................. 18
conditional expressions................ 13
constants il 10
CONVETSIONS . . .ottt ttee e et iaaeeenn 23
COpy-On-write ..., 5
delayed execution 21
1539 4e) = 3,4,9, 10, 21
EXPIESSIONS . . oo v ettt et 9
inheritance............ oL 5
iteration ... 19
list extracting 14, 15
list operations....................oo... 25
BStS oo 3,4, 10, 14, 25
literalsooooi 10
local variables......................... 10
method arguments 7
method variables 7, 10
methods 5, 6, 16

miscellaneous operations 29

39
multiple inheritance.................... 5
NUMDETS. ... oti i 3, 10
object code syntax 29
object variables 5
objects.o 3, 5, 10
parentheses ol 16
parents............. i, 5, 29
PASSING .. .vviii 22
PErmissionscouuiiiiii... 6
precedence............oiiiiiiiiiii... 16
prepositions. ...l 7
pseudo-variables....................... 11
reparenting. ... 5
returning values............... 21
SEIVETS oottt et et 3
statements........... ... oL 17
string extracting................... 14, 15
string operations...................... 24
strings ...l 3, 10, 14, 24
T
type-checking 23
types ..o 10
variables.................. 5, 7, 10, 11, 30
variables, local 10
variables, method 10
variables, pseudo...................... 11
VEIDS .ttt 7, 29

Table of Contents

Introduction 1
1 The COOLMUD database..................... 3
1.1 Values ..o 3
1.2 ObJeCtS . vttt 5
1.2.1 Parentsoooiiii e)
1.2.2 Object variables......... ... i 5
1.2.3 Methods ... 6
1.2.4 Verbs ... 7

2 The COOL programming language............ 9
2.1 COMMENES . ottt ettt et et 9
2.2 EXPreSSIONSvvvttttt ettt e 9
2.2 1 BITOTS. e 9
2.2.2 Literals ... 10
2.2.3 Variables.......... i 10
2.2.4 Arithmetic........ ..o i 11
2.2.5 Comparing valuesouiiiiiiiiiieiniiiennn.. 12
2.2.6 Conditional expressionscooiiiiiiiiiiii.. 13
2.2.7 Lists and strings ...ttt 14
2.2.8 Calling built-in functions and other methods.............. 16
2.2.9 Parentheses and operator precedence 16
2.3 Statements.oiiiii 17
2.3.1 Simple statements........... ... i 17
2.3.2 Conditional executionc..oo i, 18
2.3.3 Tterationooiiiiiii 19
2.3.4 Returning a value from a method......................... 21
2.3.5 Executing statements at a later time...................... 21
2.3.6 BEITOTS.ottt e 21
2.4 Built-in functions ... 22
2.4.1 Passing executionttt 22
2.4.2 Type-checking and conversionc...o... 23
2.4.3 Operations on stringscooeiiiiiiiiiiien.. 24
2.4.4 Operations on lists ... 25
2.4.5 Operations on objects ..., 26
2.4.6 Miscellaneous operationscoovveiiiiiiiiinenn... 29
2.4.7 System functions.......... 29
2.5 Syntax for object code 29
2.5.1 Parent declarations............... ..o 29
2.5.2 Verb declarations. ...t 29
2.5.3 Variable declarations.............o 30
2.5.4 Method declarations...............coiiiiiiinnnneen.. 30

ii COOLMUD Programmer’s Manual

3 Differences between COOL and MOO....... 31
4 Setting up a new COOLMUD................ 33

4.1 TInterconnecting COOLMUDSouueneeieeeeeeeanen., 33
Function Index 35
Variable Index.................. 37

Concept Index......... ..., 39

	Introduction
	The COOLMUD database
	Values
	Objects
	Parents
	Object variables
	Methods
	Verbs

	The COOL programming language
	Comments
	Expressions
	Errors
	Literals
	Variables
	Arithmetic
	Comparing values
	Conditional expressions
	Lists and strings
	Calling built-in functions and other methods
	Parentheses and operator precedence

	Statements
	Simple statements
	Conditional execution
	Iteration
	Returning a value from a method
	Executing statements at a later time
	Errors

	Built-in functions
	Passing execution
	Type-checking and conversion
	Operations on strings
	Operations on lists
	Operations on objects
	Miscellaneous operations
	System functions

	Syntax for object code
	Parent declarations
	Verb declarations
	Variable declarations
	Method declarations

	Differences between COOL and MOO
	Setting up a new COOLMUD
	Interconnecting COOLMUDs

	Function Index
	Variable Index
	Concept Index

